Search results for "Fundus image analysis"
showing 3 items of 3 documents
Automated fundus images analysis techniques to screen retinal diseases in diabetic patients
2011
In this Ph.D. thesis, we study new methods to analyse digital fundus images of diabetic patients. In particular, we concentrate on the development of the algorithmic components of an automatic screening system for diabetic retinopathy. The techniques developed can be categorized in: quality assessment and improvement, lesion segmentation and diagnosis. For the first category, we present a fast algorithm to numerically estimate the quality of a single image by employing vasculature and colour-based features; additionally, we show how it is possible to increase the image quality and remove reflection artefacts by merging information gathered in multiple fundus images (which are captured by ch…
A visual framework to create photorealistic retinal vessels for diagnosis purposes
2020
The methods developed in recent years for synthesising an ocular fundus can be been divided into two main categories. The first category of methods involves the development of an anatomical model of the eye, where artificial images are generated using appropriate parameters for modelling the vascular networks and fundus. The second type of method has been made possible by the development of deep learning techniques and improvements in the performance of hardware (especially graphics cards equipped with a large number of cores). The methodology proposed here to produce high-resolution synthetic fundus images is intended to be an alternative to the increasingly widespread use of generative ad…
Retinal image synthesis through the least action principle
2020
Eye fundus image analysis is a fundamental approach in medical diagnosis and follow-up ophthalmic diagnostics. Manual annotation by experts needs hard work, thus only a small set of annotated vessel structures is available. Examples such as DRIVE and STARE include small sets for training images of fundus image benchmarks. Moreover, there is no vessel structure annotation for a number of fundus image datasets. Synthetic images have been generated by using appropriate parameters for the modeling of vascular networks or by methods developing deep learning techniques and supported by performance hardware. Our methodology aims to produce high-resolution synthetic fundus images alternative to the…